Star manifold type SCP/SDP/SEP # **TECHNICAL DATA** ## SCP/SDP/SEP Manifold height (VH) SCP: 36 mm **SDP:** 46 mm **SEP:** 56 mm Operating voltage 230 V_{AC}* Manifold length (VL) $ØTK + 2 \times DS$ The heating output of each control circuit is calculated individually. *Volts alternating current (upon consultation) PE protective conductor terminal 110.229 (2 m cable), incl. cylinder screw M4x6-12.9 # **INSTALLATION** #### Nozzle tip view DS Edge distance: a. min. 35.0 with nozzle size ≤ 6 b. min. 45.0 with nozzle size 8 or 10 c. min. 50.0 with nozzle size ≥ 12 ## ØTK Pitch circle diameter - ① Screw connection close to manifold - ② High-temperature insulation plate ③ Heating connections - 4 Possible pin position - 5 Opening and plug location dependent upon nozzle type # Manifold height (VH) Dimension "K" required for heat expansion is to be ensured by grinding the pressure piece (12 + 0.1 mm)! Determine the difference between the height of the manifold system and the height of the frame plate when installed! ΔT specifies the temperature differential between the processing temperature and the mould temperature! | VH | ΔT (°C) | 100 | 150 | 200 | 250 | 300 | 350 | |-------|---------|-------|-------|-------|-------|-------|-------| | 36 mm | K (mm) | 0.021 | 0.059 | 0.098 | 0.137 | 0.177 | 0.217 | | 46 mm | K (mm) | 0.033 | 0.078 | 0.124 | 0.170 | 0.218 | 0.264 | | 56 mm | K (mm) | 0.046 | 0.097 | 0.150 | 0.203 | 0.258 | 0.311 | # Design examples/Balancing | Туре | | SCP = 36 (VH)
Melt channel
Ød in mm | SDP = 46 (VH)
Melt channel
Ød in mm | SEP = 56 (VH)
Melt channel
Ød in mm | Number
of drops | |-------|---|---|---|---|--------------------| | S_P3B | d | ≤ 10 | ≥ 12 to 16 | ≥ 16 | 3 | | S_P6B | d | | ≤ 8 | ≤ 10 | 6 | | S_P8B | d | | ≤ 8 | ≤ 10 | 8 | B = balanced 2.4.120 We reserve the right to make technical changes.