Straight manifold type GDP Manifold length (VL) 160-360 # **TECHNICAL DATA** ## **GDP VL 160-360** | Manifold height | (VH) | 46 m | m | n | | |-----------------------------------|-----------------------|------|-------------|-----|-----| | Operating voltage | 230 V _{AC} * | | | | | | Manifold length | 160 | 210 | 260 | 310 | 360 | | Control circuits | 1 | 1 | 1 | 1 | 1 | | Power (watts) per control circuit | 2 ×
750 | | 2 ×
1000 | | | ^{*}Volts alternating current PE protective conductor terminal 110.229 (2 m cable), incl. cylinder screw M4x6-12.9 #### **INSTALLATION** #### Nozzle tip view DS Edge distance: a. min. 35.0 with nozzle size ≤ 6 b. min. 45.0 with nozzle size 8 or 10 c. min. 50.0 with nozzle size ≥ 12 - S1 Largest pitch (max. pitch) - S2 Pitch between the nozzles (min./max. pitch) - S3 Pitch between the nozzles, taking connecting element and spacer into account (min./max. pitch) - ① Screw connection close to manifold - ② High-temperature insulation plate - (3) Heating connections - 4 Possible pin position - (5) Opening and plug location dependent upon nozzle type # Dimension "K" required for heat expansion is to be ensured by grinding the pressure piece (12 + 0.1 mm)! Determine the difference between the height of the manifold system and the height of the frame plate when installed! ΔT specifies the temperature differential between the processing temperature and the mould temperature! | VH | ΔT (°C) | 100 | 150 | 200 | 250 | 300 | 350 | |-------|---------|-------|-------|-------|-------|-------|-------| | 46 mm | K (mm) | 0.033 | 0.078 | 0.124 | 0.170 | 0.218 | 0.264 | ### Design examples/Balancing | Туре | | Melt channel
Ød in mm | Number of drops | |-------|-----|--------------------------|-----------------| | GDP1B | • d | ≥ 12 to 16 | 1 | | GDP2B | • d | ≥ 12 to 16 | 2 | | GDP3- | • d | ≥ 12 to 16 | 3 | | GDP3T | • d | ≤ 6 | 3 | | GDP4B | d | ≤ 12 to 16 | 4 | | GDP6T | d | ≤ 8 | 6 | B = balanced T = partially balanced - = not balanced